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Motivation & Outline

Formal analogies between general relativity and electrodynamics: Matte 1953, Bel 1962
Physical analogies in gravitoelectromagnetism (GEM): Mashhoon et al. 1984
Question: Are there physical analogies that go beyond the linearized level?

•The Plebański–Demiański solution in brief

•Conventions, exterior calculus

•Curvature invariants and their similarities to electromagnetism

•The Bel–Robinson tensor and its 3-form

•The Kummer tensor

•Conclusions & Summary
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The Plebański–Demiański solution in brief

Found by Plebański & Demiański in 1976.

It has seven free parameters and is of Petrov type D (Szekeres: “Coulomb-like”).

It can describe a massive,
rotating,
electrically & magnetically charged,
uniformly accelerating

black hole in a de Sitter background
with an additional NUT parameter.

Various subclasses: Schwarzschild, Kerr, C-metric, Taub–NUT, …

Physical interpretation: Griffiths & Podolský (2006)
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Conventions, Exterior Calculus
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We use exterior calculus. We have a frame     and a dual coframe    :

By means of the metric, we choose a pseudo-orthogonal frame and coframe:

Expand exterior forms — say, the curvature 2-form — in terms of their components:

anholonomic holonomic
coframe coordinate cobasis



  

Curvature invariants (for any type D spacetime)
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1. Kretschmann scalar:

2. Chern–Pontryagin pseudo-scalar:
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1. Kretschmann scalar:

2. Chern–Pontryagin pseudo-scalar:

Physical analogy for Plebański–Demiański solution (in the asymptotically flat case):
m: mass, a: angular momentum
n:    NUT parameter 
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1. Kretschmann scalar:

2. Chern–Pontryagin pseudo-scalar:

Physical analogy for Plebański–Demiański solution (in the asymptotically flat case):
m: mass, a: angular momentum
n:    NUT parameter 

gravitoelectric, gravitomagnetic



  

The Bel–Robinson tensor
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Related to super-energy. Traditionally defined as a     tensor:

Physical dimension:

Algebraic properties:

Similar to the electromagnetic energy momentum (tracefree and symmetric).



  

The Bel–Robinson 3-form
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Geometrically, energy-momentum is a current 3-form.
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Geometrically, energy-momentum is a current 3-form.

Analogous expressions for vacuum electrodynamics and general relativity:
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The Bel–Robinson 3-form
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Geometrically, energy-momentum is a current 3-form.

Analogous expressions for vacuum electrodynamics and general relativity:

The symmetric energy-momentum tensors are derived analogously:

Both yield “energy density” squared: Both are traceless:



  

Kummer tensor

Cubic in curvature, can be defined for Riemann as well as Weyl.
Systematic introduction to electrodynamics and gravity by Baekler et al. (2014)

It is related to so-called Kummer surfaces (propagation of waves),
and principal null directions of curvature.

Can be irreducibly decomposed into six pieces. There are two invariants:

They are Bel's fundamental vacuum scalars.
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Conclusions & Summary
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Physical analogy for Plebański–Demiański solution (in the asymptotically flat case):

Analogous expressions for vacuum electrodynamics and general relativity:

Bel–Robinson 3-form        : needs more attention.

More details in J.B., “Plebański–Demiański solution of general relativity and its expressions 
quadratic and cubic in curvature: analogies to electromagnetism”, arXiv:1412.1958 [gr-qc],
Int. J. Mod. Phys. D 24 (2015) 1550079.

m: mass, a: angular momentum
n:    NUT parameter 

gravitoelectric, gravitomagnetic
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The Plebański–Demiański solution (1/2)

Found by Plebański & Demiański in 1976, expressed in the coordinates              .
It has seven free parameters and is of Petrov type D (Szekeres: “Coulomb-like”).
The pseudo-orthogonal coframe 1-forms read:

The metric is given by                      , with                                .
        and         are fourth-order polynomials, prescribed by the Einstein–Maxwell 
equations:                                   , where    is the cosmological constant.



  

The Plebański–Demiański solution (2/2)

The polynomials are given by

The vector potential 1-form is

The free parameters are thus                        .



  

Griffiths & Podolský (1/2)

Physical interpretation of polynomial coordinates problematic.
New coordinates    replace the polynomial    .

The metric is given by                      , with                                .

The new parameters are                       .



  

Griffiths & Podolský (2/2)

The auxiliary functions are given by

The vector potential 1-form is
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